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Kinetic derivation of the hydrodynamic equations for capillary fluids
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Based on the generalized kinetic equation for the one-particle distribution function with a small source, the
transition from the kinetic to the hydrodynamic description of many-particle systems is performed. The basic
feature of this interesting technique to obtain the hydrodynamic limit is that the latter has been partially
incorporated into the kinetic equation itself. The hydrodynamic equations for capillary fluids are derived from
the characteristic function for the local moments of the distribution function. Fick’s law appears as a conse-
guence of the transformation law for the hydrodynamic quantities under time inversion.
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[. INTRODUCTION avoid misunderstanding, it is worthwhile to note that the

§chr<‘jdinger equation alone does not provide an entire quan-
tum mechanical picture. It should be necessarily supple-
mented by a theory of quantum measurement and conse-
quently by a proper physical interpretation of wave packets.

The most simple and comprehensive model in the physic
of interfaces and capillarity is described by the following
hydrodynamic equations:

aQ +V (0V)=0 (1) In the quantumlike approach, the many-particle systems are
ot ev)="9, described in an effective way as a whole. Based on the above
considerations, it appears interesting to explore the possibil-

N S(0F) ity of a der_ivation from !(inetic theory of the ggneral hydro-'
at (V-V)V=- 50 | (2)  dynamic picture thus discussed. The analysis performed in

this paper can be outlined as follows: starting from the equa-
where F(p,a) is a function of the density and of «  tion for the one-particle distribution function, we consider a
=(1/2)|Vp[? andV is the current velocity1]. This formula- stochastic contribution from an additional collision term

tion of the van der Waals theory was originally due to(small sourcg To estimate this term, we use the Kramers-

Korteweg[2], who proposed a continuum mechanical modelMoyal expansion truncated at second ordeiffusion pro-

in which the Cauchy stress tensor apart from the standar@essep The final step constituting the hydrodynamic mar-

Cauchy-Poisson term contains an additional term defined a@nalization is performed in the third section. Taking into
account a special class of diffusion processes, the so-called

T=(-p+aVie(xt)+ B8 Ver)1+ sV et Nelson diffusion[11,8], this step recovers as expected the
® Vox;t)+ 1V ® V)o(x;t), (3) standard time-reversal invariance of hydrodynamic equa-
tions.

where 1 is the unit tensor. As already mentioned by Dunn
and Serrin[3], the modern terminology concerning the

Korteweg model refers to elastic materials of gradevhere Il. GENERAL FRAMEWORK
the particular case ofi=3 has been well studied in recent
years[4]. The starting point of our analysis is the equation for the

Equationg1) and(2) have been linked recent[s,6] to a  microscopic phase space dendity(x,p;t)
nonlinear Schrédinger equation and its hydrodynamics coun-
terpart, i.e., nonlinear Madelung fluig?,8]. This link be-
A S . Ny 1 >

tween capillarity and the Schrodinger equation can shed —"+ =V - (pNy) +d, - [Fu(x,p;tNy]1=0,  (4)

more light onto the so-called quantumlike approach to many- gt m

particle systems such as beams in particle accelerators and

beam-plasma systems. The standard procedure in this dirésy 5 system consisting dfl particles, which occupies vol-

tion is to approximate the physical systems characterized byyme Vv in the configuration space. Hekeandp are the co-

an overall interaction with a suitable mean field theory. Togdinates and the canonically conjugate momentas the
particle mass, anB,,(x,p;t) is the microscopic force, which
apart from the external force includes a part specifying the

*Electronic address: demartino@sa.infn.it type of interaction between particles. Suppose that at some
"Electronic address: rosfal@sa.infn.it initial time t, the microscopic phase space density is known
*Electronic address: giuliana.lauro@unina2.it to be Nyo(X,p;tg). Then, the formal solution of Eq4) for
SElectronic address: tzenov@sa.infn.it arbitrary timet can be written as
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Nua(X,P;1) = S(t; o Nurox,Pi o), (®) 2= 1 == VAT + ST B 0, (1)

where :S(t;to) is the evolution operator, specifying the
Hamiltonian flow. where
The choice of the initialNyo(X,p;tg) is based on the
knowledge of the microscopic char_acteristics o_f the system. A(X;t) = }<Azk>§<Gt)v By (X;t) = }<AZKAZ|>§<Gt), (12)
Due to the extremely complex particles’ dynamics, full con- T ' T '
sistent description is not feasible. Therefore the detailed in- ) o o
formation on the microscopic level is incomplete. If our sys-&Nd @ summation over repeated indices is implied. For
tem is a complex one in the sense that both the externdf@miltonian systems the well-known relation
forces and the collective forces are highly nonlinear, a dy- 1
pamit_: instability of motion _is likely to occur on a character- A(X;1) = =V By (x;t) (13)
istic time scaler. The only information available to an out- 2
side observer by means of a macroscopic measuring device . . _ _
is a coarse-grained density distribution with a smoothing}c’lds' which givesA =0 for B, =const.

function, which takes into account the dynamic instability of . Iln pafssmg, '.t IS wor'thfwhllett.o mentlton tha’; usmgl] tthta pgn-
motion. Thus we assume ciple of maximum information entropy formulate y

Jaynes, it can be showj®] that the smoothing function

—_ . G(z;t|x) is of the form
Nyo(X;to) = Ny(X;tg) = | d®zG(X;to|2)Np(z;te),  (6)

1
. - - — (7 —(7\(G©T

where for simplicity the explicit dependence on the momen- G(z;t}x) = 312 /d —exfl~ (2= (2)xp)
tum variablesp has been suppressed. To take into account ™%\ detC|
the initial preparation of the system, one has to displace the S=10y 1\ (5 _ /N (G)
initial time t, at —o and perform an average over the past XCHX;)(Z = (2 7)]- (14
history of the system. Then E¢4) becomeg9] The quantities

Z\ 1 - 1~

TV (PN) + - (PO ONw] = ~ Ny = Ny, @d. (@), (19

(7)  arethefirstand the second momenteit the instant of time
t+ 7, provided thatz measured at the instahequalsx [i.e.,

Sincg the collision time is su_pposgd to be muph smaller th.aQ(t):x]. In addition,C(x;1) is the covariance matrix defined
the time 7, the standard collision integral which appears LI B

kinetic theory can be dropped and the kinetic equation for

?Se one-particle distribution functiof{x,p;t) can be written Cux,t) = 2[(za)\S — (20 G(Z)S ] (16)

oF p 1~ The generalized kinetic equatié®) has a form analogous to

—+ = VIi+F(x,p;t) -épf ==(f-1). (8) the Bhatnagar-Gross-KrogqBGK) equation, widely used in

Ja.-m T the kinetic theory of gaselQ]. There is, however, an im-
The right-hand-side of Eq8) is regarded as a “collision Portant conceptual difference between the two equations. In

integral” and using the Kramers-Moyal expansion, it can bethe BGK equation the functiof should be replaced by the

expressed as equilibrium distribution functionfy describing the global
. | equilibrium and the characteristic timeshould be replaced
}G_ =S 3 -1 by the corresponding relaxation time. The smoothed distri-
r - e o niny! -y bution function in Eq(8) characterizes a local quasiequilib-
A rium state within the smallest unit cell of continuous me-
ek dium, while 7 is the corresponding time scale.
w— T (o] ©)
NNy N\ )
R IIl. HYDRODYNAMIC APPROXIMATION
where Rather than following the standard approach in deriving
1 the hydrodynamic picture, we introduce the characteristic
Dginz--vnk(X;t) - ;f dSZAZTIAZSZ e AZEkG(Z;ﬂX) function
1 RN [ o) oW
= ~(azpaze A9, (10) Glx,w;t) = f dpf(x,p;)e™®, (17)

with Az=z-x. As a first very interesting step, we consider instead. It is straightforward to verify thai satisfies the
the diffusion approximation following equation:
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%NEV GG HIW-FG=—V -(AG) + %vnvs(ang).
(18)
Note that the local moment®]*p52- --pik) can be obtained
from the characteristic function according to the relation
dg

é'\NTl(?\NgZ . ‘?WEk ! (19

w=0

(pip5?- - py = '

where ny+n,+---+n=l. The well-known hydrodynamic
quantities, such as the mass dengityhe mean velocity/ ,,

of a fluid element, and the hydrodynamic stress ted$gr
can be defined as

o(x;t) =mng(x,0;t) :mnf d*pf(x,p;t), (20)

OGOV (D) = indyGl,o=n f d®ppf(x,p:t), (21)

n &G
== MW,

n
O=;1fd3ppkp|f(x,p;t),
w=l
(22)

Here, n=limyy_...(N/V) implies the thermodynamic limit.

Defining also the deviation from the mean velocity as
MC4) =P =MV (4, (23

and using the evident relation

f dBpciy(x,p;Hf(x,p;t) =0,

we can represent the stress tendgy;, according to the rela-
tion
1_[mn: QV(+)mV(+)n + 7Dmn- (24)

Here
Pulx;t) = mnf dPpciCinfx,p;t) (25

is the internal stress tensor.
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by [9,11 t—T=-t, x—X=x andp—p=-p. We argue that
there exists a backward velocit_(x,t) such that

VX, —t) ==V (x,b). (29

The transformed Smoluchowski equati@®6) can be repre-
sented according to

1
QEQ -V [e(-V,+A)]=- EVkVI(BkIQ)- (29

Summing up and subtracting Eq&6) and (27), we obtain
the continuity equation

J
21V .(ev)=0, (30
ot
and the Fick’s law
Ue=-A +iV(B ) (32)
k=~ A 20 (By@).
Here
1 1
V= E(V(+) +V), U= E(V(+) -V, (32

are the current and the osmotic velocity, respectively. It is
worthwhile to mention that since the mean velocity of a fluid
element is a generic function of tinte it can be split into
odd and even parts. Note that from E82) it follows that
V=V +U, whereV is the odd part, whileJ is the even
part. Equation(27) for the balance of momentum can be
written alternatively as

Nk v TVire= 2+ ATV = 29,7
ot (S IVIV(+)k 0 17kl

B
+ ViV (33)

After performing a time inversion in Eq33), we obtain

Nk o TVe= = ATV 9T
ot EIYIVERT 1 VIV(-)k 0 177kl

Equation(18) and the one obtained after differentiating
with respect tow, evaluated atw=0, yield the Smolu-
chowski equation and the equation for the momentum bal- _
ance, respectively. These can be written in the form wherePy, denotes the transformed internal stress tensor after

a0 performing the time inversion. Summing up the last two

B
- fvlvnvﬁk, (34)

=+ V [V +A)]= leV|(Bk|Q), (26)  equations, we arrive at the sought-for equation for the current
ot 2 velocity,
9 e M _ P S
2@V + Vi@V = Fi= V- (AeVi) = ViPy o TUViVies AV U QVﬂ?”( +UViUg
1 BIn
+ §V|Vn(B|nQV(+)k)- (27) + ?Vlvnuk' (39

Let us consider the time inversion transformation specifiedvhere
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— 1 —_ rteweg stress tensor can be regarded as a coupling between
Pin= 5 (Pin* Pic)- (36)  the external field and the mean field of purely hydrodynami-
cal origin.
In order to find the explicit form of the internal stress tensor
(25), we observe that the maximum entropy of the system is IV. CONCLUSION
realized, provided the small source in the generalized kinetic o ] ]
equation(8) vanishes. This condition is equivalent to the Since detailed information about the system on the micro-
condition of detailed balance in the case, where the collisio$COPIC level is incomplete, one possible way to take into
integral (small sourcgis approximated by a Fokker-Planck account its initial preparation, i.e., an eventual dynamic in-

operator. The condition of detailed balance implies that thétability of motion that might have set in and/or other large-
distribution function factorizes in the form scale characteristics, is to introduce a suitable smoothing

procedure. As a result, the kinetic equation providing a uni-
e i fied kinetic, hydrodynamic, and diffusion description con-
fegx,p:D) = mn Fp:0, (37) tains a small source and is therefore irreversible. Although
L . , the effective collision integra{small sourcg can be repre-
where F(p;t) is a normalizable function. From the above gonted as a Kramers-Moyal expansion, for the purposes of

considerations, it follows directly that the present paper it suffices to consider the right-hand side of
3T the generalized kinetic equation as approximated with a
Pulx;t) = —BQ(X;t)5k|, (38) properly defined Fokker-Planck operator. The latter form of
m

the collision term is adopted as a starting point in the deri-

wherekg is the Boltzmann constant arfdis the temperature. Vation of the hydrodynamic equations for capillary fluids.
In the simplest case, where the external force vanishe$he hydrodynamic approximation is further obtained in a
and the diffusion tensor is diagonal and isotrofBg=p85,,  Standard manner from the characteristic function for the local
we obtain moments of the distribution function. An important feature of
the approach is that Fick's law emerges naturally from the
B? Vz\r’E transformation properties of the hydrodynamic quantities un-
—+V-V)V==-V{alhng-— = | (39 d . . ) Th fi locity i . | .
ot 2 o ler time inversion. The osmotic velocity is uniquely speci
fied by the first two infinitesimal moments of the smoothing
where a=3kgT/m. Thus the hydrodynamic equations de- function and in a sense is a measure of the irreversibility.
scribing a free capillary fluid have been recovered. The main result of the analysis performed in this paper,
In the case, where an external force is applied, thehe hydrodynamic equations for free capillary fluids, has
Korteweg stress tensor contains an additional term propoteen derived from kinetic theory. If an external force is
tional to the drift coefficienfA. On the other hand, from the present, the Korteweg stress tensor has to be modified ac-
principle of detailed balance, it follows that the drift coeffi- cordingly. An additional term proportional to the drift coef-
cient is proportional to the external force. The physical im-ficient emerges implying a coupling between the external
plication of the latter is that the additional term in the Ko- field and the mean field of purely hydrodynamical origin.
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