
Kinetic derivation of the hydrodynamic equations for capillary fluids

S. De Martino,1,* M. Falanga,1,† G. Lauro,2,‡ and S. I. Tzenov1,§

1Dipartimento di Fisica, Università degli Studi di Salerno, INFM unità di Salerno, INFN, Sezione di Napoli,
Gruppo Collegato di Salerno, Via S. Allende, Baronissi (SA) I-84081, Italy

2Facoltà di Architettura, II Università degli Studi di Napoli, I-81031 Aversa (Ce), Italy
(Received 6 May 2004; published 13 December 2004)

Based on the generalized kinetic equation for the one-particle distribution function with a small source, the
transition from the kinetic to the hydrodynamic description of many-particle systems is performed. The basic
feature of this interesting technique to obtain the hydrodynamic limit is that the latter has been partially
incorporated into the kinetic equation itself. The hydrodynamic equations for capillary fluids are derived from
the characteristic function for the local moments of the distribution function. Fick’s law appears as a conse-
quence of the transformation law for the hydrodynamic quantities under time inversion.
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I. INTRODUCTION

The most simple and comprehensive model in the physics
of interfaces and capillarity is described by the following
hydrodynamic equations:

]%

]t
+ = · s%Vd = 0, s1d

]V

]t
+ sV · = dV = − = Fds%Fd

d%
G , s2d

where Fs% ,ad is a function of the density% and of a
=s1/2du¹ru2 andV is the current velocity[1]. This formula-
tion of the van der Waals theory was originally due to
Korteweg[2], who proposed a continuum mechanical model
in which the Cauchy stress tensor apart from the standard
Cauchy-Poisson term contains an additional term defined as

T = s− p + a¹2%sx;td + bu = %sx;tdu2d1 + d = %sx;td

^ = %sx;td + gs= ^ = d%sx;td, s3d

where1 is the unit tensor. As already mentioned by Dunn
and Serrin [3], the modern terminology concerning the
Korteweg model refers to elastic materials of graden, where
the particular case ofn=3 has been well studied in recent
years[4].

Equations(1) and(2) have been linked recently[5,6] to a
nonlinear Schrödinger equation and its hydrodynamics coun-
terpart, i.e., nonlinear Madelung fluid[7,8]. This link be-
tween capillarity and the Schrödinger equation can shed
more light onto the so-called quantumlike approach to many-
particle systems such as beams in particle accelerators and
beam-plasma systems. The standard procedure in this direc-
tion is to approximate the physical systems characterized by
an overall interaction with a suitable mean field theory. To

avoid misunderstanding, it is worthwhile to note that the
Schrödinger equation alone does not provide an entire quan-
tum mechanical picture. It should be necessarily supple-
mented by a theory of quantum measurement and conse-
quently by a proper physical interpretation of wave packets.
In the quantumlike approach, the many-particle systems are
described in an effective way as a whole. Based on the above
considerations, it appears interesting to explore the possibil-
ity of a derivation from kinetic theory of the general hydro-
dynamic picture thus discussed. The analysis performed in
this paper can be outlined as follows: starting from the equa-
tion for the one-particle distribution function, we consider a
stochastic contribution from an additional collision term
(small source). To estimate this term, we use the Kramers-
Moyal expansion truncated at second order(diffusion pro-
cesses). The final step constituting the hydrodynamic mar-
ginalization is performed in the third section. Taking into
account a special class of diffusion processes, the so-called
Nelson diffusion[11,8], this step recovers as expected the
standard time-reversal invariance of hydrodynamic equa-
tions.

II. GENERAL FRAMEWORK

The starting point of our analysis is the equation for the
microscopic phase space densityNMsx ,p ; td

]NM

]t
+

1

m
= · spNMd + ]Wp · fFMsx,p;tdNMg = 0, s4d

for a system consisting ofN particles, which occupies vol-
umeV in the configuration space. Herex andp are the co-
ordinates and the canonically conjugate momenta,m is the
particle mass, andFMsx ,p ; td is the microscopic force, which
apart from the external force includes a part specifying the
type of interaction between particles. Suppose that at some
initial time t0 the microscopic phase space density is known
to be NM0sx ,p ; t0d. Then, the formal solution of Eq.(4) for
arbitrary timet can be written as
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NMsx,p;td = Ŝst;t0dNM0sx,p;t0d, s5d

where Ŝst ; t0d is the evolution operator, specifying the
Hamiltonian flow.

The choice of the initialNM0sx ,p ; t0d is based on the
knowledge of the microscopic characteristics of the system.
Due to the extremely complex particles’ dynamics, full con-
sistent description is not feasible. Therefore the detailed in-
formation on the microscopic level is incomplete. If our sys-
tem is a complex one in the sense that both the external
forces and the collective forces are highly nonlinear, a dy-
namic instability of motion is likely to occur on a character-
istic time scalet. The only information available to an out-
side observer by means of a macroscopic measuring device
is a coarse-grained density distribution with a smoothing
function, which takes into account the dynamic instability of
motion. Thus we assume

NM0sx;t0d = ÑMsx;t0d =E d3zGsx;t0uzdNMsz;t0d, s6d

where for simplicity the explicit dependence on the momen-
tum variablesp has been suppressed. To take into account
the initial preparation of the system, one has to displace the
initial time t0 at −̀ and perform an average over the past
history of the system. Then Eq.(4) becomes[9]

]NM

]t
+

1

m
= · spNMd + ]Wp · fFMsx,p;tdNMg =

1

t
sÑM − NMd.

s7d

Since the collision time is supposed to be much smaller than
the timet, the standard collision integral which appears in
kinetic theory can be dropped and the kinetic equation for
the one-particle distribution functionfsx ,p ; td can be written
as

]f

]t
+

p

m
· = f + Fsx,p;td · ]Wpf =

1

t
s f̃ − fd. s8d

The right-hand-side of Eq.(8) is regarded as a “collision
integral” and using the Kramers-Moyal expansion, it can be
expressed as

1

t
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`
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where
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1
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with Dz=z−x. As a first very interesting step, we consider
the diffusion approximation

1

t
s f̃ − fd = − ¹kfAksx;tdfg +

1

2
¹k¹lfBklsx;tdfg, s11d

where

Aksx;td =
1

t
kDzklx,t

sGd, Bklsx;td =
1

t
kDzkDzllx,t

sGd, s12d

and a summation over repeated indices is implied. For
Hamiltonian systems the well-known relation

Aksx;td =
1

2
¹lBklsx;td s13d

holds, which givesA =0 for Bkl=const.
In passing, it is worthwhile to mention that using the prin-

ciple of maximum information entropy formulated by
Jaynes, it can be shown[9] that the smoothing function
Gsz; t uxd is of the form

Gsz;tuxd =
1

p3/2ÎudetĈu
expf− sz − kzlx,t

sGddT

3Ĉ−1sx;tdsz − kzlx,t
sGddg. s14d

The quantities

kzklx,t
sGd, kzkzllx,t

sGd, s15d

are the first and the second moment ofz at the instant of time
t+t, provided thatz measured at the instantt equalsx [i.e.,

zstd=x]. In addition,Ĉsx ; td is the covariance matrix defined
as

Cklsx,td = 2fkzkzllx,t
sGd − kzklx,t

sGdkzllx,t
sGdg. s16d

The generalized kinetic equation(8) has a form analogous to
the Bhatnagar-Gross-Krook(BGK) equation, widely used in
the kinetic theory of gases[10]. There is, however, an im-
portant conceptual difference between the two equations. In

the BGK equation the functionf̃ should be replaced by the
equilibrium distribution functionf0 describing the global
equilibrium and the characteristic timet should be replaced
by the corresponding relaxation time. The smoothed distri-
bution function in Eq.(8) characterizes a local quasiequilib-
rium state within the smallest unit cell of continuous me-
dium, while t is the corresponding time scale.

III. HYDRODYNAMIC APPROXIMATION

Rather than following the standard approach in deriving
the hydrodynamic picture, we introduce the characteristic
function

Gsx,w;td =E d3pfsx,p;tde−iw·p, s17d

instead. It is straightforward to verify thatG satisfies the
following equation:
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]G
]t

+
i

m
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1

2
¹n¹ssBnsGd.
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Note that the local momentskp1
n1p2

n2
¯pk

nkl can be obtained
from the characteristic function according to the relation

kp1
n1p2

n2
¯ pk

nkl = i lU ]lG
]w1

n1]w2
n2
¯ ]wk

nk
U

w=0

, s19d

where n1+n2+¯ +nk= l. The well-known hydrodynamic
quantities, such as the mass density%, the mean velocityV s+d
of a fluid element, and the hydrodynamic stress tensorPkl
can be defined as

%sx;td = mnGsx,0;td = mnE d3pfsx,p;td, s20d

%sx;tdV s+dsx;td = uin]→wGuw=0 = nE d3ppfsx,p;td, s21d

Pklsx;td = −
n

m
U ]2G

]wk]wl
U

w=0
=

n

m
E d3ppkpl fsx,p;td,

s22d

Here, n=limN,V→`sN/Vd implies the thermodynamic limit.
Defining also the deviation from the mean velocity as

mcs+d = p − mV s+d, s23d

and using the evident relation

E d3pcs+dsx,p;tdfsx,p;td = 0,

we can represent the stress tensorPmn according to the rela-
tion

Pmn= %Vs+dmVs+dn + Pmn. s24d

Here

Pklsx;td = mnE d3pcs+dkcs+dl fsx,p;td s25d

is the internal stress tensor.
Equation(18) and the one obtained after differentiating

with respect towk evaluated atw=0, yield the Smolu-
chowski equation and the equation for the momentum bal-
ance, respectively. These can be written in the form

]%

]t
+ = · f%sV s+d + Adg =

1

2
¹k¹lsBkl%d, s26d

]

]t
s%Vs+dkd + ¹ls%Vs+dkVs+dld =

%

m
Fk − = · sA%Vs+dkd − ¹lPkl

+
1

2
¹l¹nsBln%Vs+dkd. s27d

Let us consider the time inversion transformation specified

by [9,11] t→ t̃=−t, x→ x̃=x and p→ p̃=−p. We argue that
there exists a backward velocityV s−dsx ,td such that

Ṽ s+dsx,− td = − V s−dsx,td. s28d

The transformed Smoluchowski equation(26) can be repre-
sented according to

]%

]t
− = · f%s− V s−d + Adg = −

1

2
¹k¹lsBkl%d. s29d

Summing up and subtracting Eqs.(26) and (27), we obtain
the continuity equation

]%

]t
+ = · s%Vd = 0, s30d

and the Fick’s law

Uk = − Ak +
1

2%
¹lsBkl%d. s31d

Here

V =
1

2
sV s+d + V s−dd, U =

1

2
sV s+d − V s−dd, s32d

are the current and the osmotic velocity, respectively. It is
worthwhile to mention that since the mean velocity of a fluid
element is a generic function of timet, it can be split into
odd and even parts. Note that from Eq.(32) it follows that
V s+d=V +U, whereV is the odd part, whileU is the even
part. Equation(27) for the balance of momentum can be
written alternatively as

]Vs+dk

]t
+ Vs−dl¹lVs+dk =

Fk

m
+ Al¹lVs+dk −

1

%
¹lPkl

+
Bln

2
¹l¹nVs+dk. s33d

After performing a time inversion in Eq.(33), we obtain

]Vs−dk

]t
+ Vs+dl¹lVs−dk =

Fk

m
− Al¹lVs−dk −

1

%
¹lP̃kl

−
Bln

2
¹l¹nVs−dk, s34d

whereP̃kl denotes the transformed internal stress tensor after
performing the time inversion. Summing up the last two
equations, we arrive at the sought-for equation for the current
velocity,

]Vk

]t
+ Vl¹lVk =

Fk

m
+ Al¹lUk −

1

%
¹lP̄lk + Ul¹lUk

+
Bln

2
¹l¹nUk, s35d

where
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P̄kn =
1

2
sPkn + P̃knd. s36d

In order to find the explicit form of the internal stress tensor
(25), we observe that the maximum entropy of the system is
realized, provided the small source in the generalized kinetic
equation(8) vanishes. This condition is equivalent to the
condition of detailed balance in the case, where the collision
integral (small source) is approximated by a Fokker-Planck
operator. The condition of detailed balance implies that the
distribution function factorizes in the form

feqsx,p;td =
%sx;td

mn
Fsp;td, s37d

where Fsp ; td is a normalizable function. From the above
considerations, it follows directly that

Pklsx;td =
3kBT

m
%sx;tddkl, s38d

wherekB is the Boltzmann constant andT is the temperature.
In the simplest case, where the external force vanishes

and the diffusion tensor is diagonal and isotropic,Bkl=bdkl,
we obtain

]V

]t
+ sV · = dV = − = Sa ln % −

b2

2

¹2Î%

Î%
D , s39d

where a=3kBT/m. Thus the hydrodynamic equations de-
scribing a free capillary fluid have been recovered.

In the case, where an external force is applied, the
Korteweg stress tensor contains an additional term propor-
tional to the drift coefficientA. On the other hand, from the
principle of detailed balance, it follows that the drift coeffi-
cient is proportional to the external force. The physical im-
plication of the latter is that the additional term in the Ko-

rteweg stress tensor can be regarded as a coupling between
the external field and the mean field of purely hydrodynami-
cal origin.

IV. CONCLUSION

Since detailed information about the system on the micro-
scopic level is incomplete, one possible way to take into
account its initial preparation, i.e., an eventual dynamic in-
stability of motion that might have set in and/or other large-
scale characteristics, is to introduce a suitable smoothing
procedure. As a result, the kinetic equation providing a uni-
fied kinetic, hydrodynamic, and diffusion description con-
tains a small source and is therefore irreversible. Although
the effective collision integral(small source) can be repre-
sented as a Kramers-Moyal expansion, for the purposes of
the present paper it suffices to consider the right-hand side of
the generalized kinetic equation as approximated with a
properly defined Fokker-Planck operator. The latter form of
the collision term is adopted as a starting point in the deri-
vation of the hydrodynamic equations for capillary fluids.
The hydrodynamic approximation is further obtained in a
standard manner from the characteristic function for the local
moments of the distribution function. An important feature of
the approach is that Fick’s law emerges naturally from the
transformation properties of the hydrodynamic quantities un-
der time inversion. The osmotic velocity is uniquely speci-
fied by the first two infinitesimal moments of the smoothing
function and in a sense is a measure of the irreversibility.

The main result of the analysis performed in this paper,
the hydrodynamic equations for free capillary fluids, has
been derived from kinetic theory. If an external force is
present, the Korteweg stress tensor has to be modified ac-
cordingly. An additional term proportional to the drift coef-
ficient emerges implying a coupling between the external
field and the mean field of purely hydrodynamical origin.
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